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All failure data for plant equipment and processes contains problems with definition of failure, data

accuracy, data recording ambiguities, data accessibility, and lack of currency values.  These are not

reasons for ignoring data.  Data banks of plant maintenance and cost records are a gold mine for

starting a chain reaction of improvements.  Data analysis puts facts into an action oriented format

involving age-to-failures, along with suspended data from successes, to focus on making

improvements to reduce the cost of unreliability.  Five data sets are analyzed to show how data is

used.  Understanding data is helpful, but making cost effective improvements by use of the data is the

business objective!

Consider these recent quotations about data for making reliability improvements:

• “A persistent theme is the lack of data bases for reliability engineering.  Continual
cries for general and specific reliability data fill the literature.” [1]

• ”…the first step is try to get good data.  This step is the most difficult….” [2]
• “The major need in HRA [Human Reliability Analysis] is for quality data.” [3]
• “…successful application of RCM [Reliability-Centered Maintenance] needs a great

deal of information.”  [4]
 

 Data appetites for making reliability improvements are high and many engineers do not know

what data to acquire or how to analyze the facts.  Jones [5] says “…we’re often left with a

glut of unused data.  Our challenge is to closely examine our systems, and our needs,

measure only the essential data, and then put our measurements to productive and

profitable use.”
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 An extension of a familiar adage may be: You can never be too rich, too thin, or have too much

useful reliability data.

 

 Definitions-

 It’s important to have the same definitions for reaching the same conclusions about reliability:

• Failure-“Loss of function when we want the function.” [6]  “The event, or inoperable
state, in which any item or part of an item does not, or would not, perform as
previously specified.” [7]

• Failure Rate- “The total number of failures within an item population, divided by the
total number of life units expended by that population, during a particular
measurement interval under stated conditions.” [7]  (Failure rate is the reciprocal of
MTBF or MTTF for exponential distributions but this is not strictly correct for Weibull
distributions when β≠1.)

• MTBF (Mean Time Between Failure)- “A basic measure of reliability for repairable
items: The mean number of life units during which all parts of the time perform
within their specified limits, during a particular measurement interval under stated
conditions.” [7]   (Often refers to the mean life for a population.)

• MTTF (Mean Time To Failure)- “A basic measure of reliability for non-repairable
items: The total number of life units of an item divided by the total number of failures
within that population, during a particular measurement interval under stated
conditions.” [7]   (Often refers to the mean life for a single piece of equipment.)

• Reliability-“The probability that an item can perform its intended  function for a
specified interval under stated conditions.” [7]

• Reliability Data-A collection of numerical facts based on measuring the motivation
of failure by cumulative insults to the component or system where three requirements
are precisely defined:
— an unambiguous measurement time origin must be defined,
— a scale for measuring passage of “time” must be set: and
— the meaning of failure must be entirely clear. [2] [8]
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• Reliability Engineering-“Appropriate application of: engineering disciplines,
techniques, skills and data to assess problems or improvements, achieve the required
reliability, maintainability, serviceability, exchangeability, availability, and yield of
products and processes at a cost that satisfies business needs.” [8]

When catastrophic failure occurs, the time of failure is clear.  However, when failure is slow

deterioration of a component or system to meet a desired standard of performance, then you

must define and quantify failure clearly to avoid confusion such as:

 What we want to achieve versus what we can do.  (Arguments over failures occur because

usually the “want” is a production viewpoint whereas “can do” is usually a maintenance or

engineering viewpoint of equipment capability.  When “can do” exceeds “want”, few

arguments occur.)

 What we are capable of achieving versus the inherent performance capability. (When

“inherent” performance exceeds required capability few arguments exist, but problems

occur when requirements exceed built-in “capability”.)

Two common threads frequently occur concerning reliability data:

 How am I doing compared to others?

 How do I make improvements?

Answers to these questions involve:

1. What are the specific numerics for existing age to failure or failure rates?

2. What is the cost of unreliability for funding reliability improvements?

3. How good is good enough?

4. Do I have a system for reporting the data in a useful format?

5. Where is my data?

Some data always exist within any company even when the data are less than perfect for

reliability purposes.  Reliability Engineering efforts must use data effectively.
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Example 1-Pump Seal Life

Two companies lack detailed failure reporting systems—one is a chemical company and the

other a refinery.  Their raw data comes from two sources:

1. A nose count of pumps from asset records, and

2. A nose count of seals replaced from purchasing/inventory records.

The count of pumps is used for determining the number of operating hours to which seals are

exposed.  Pumps running full-time are exposed at 8760 hours per year.  Spared pumps are

exposed 8760 hours per year for the set assuming each pump runs one-half time.

Purchasing/inventory values of seals consumed help find the number of failures experienced

during the year.  (The number of failures recorded are assumed as correct values since both

purchasing and inventory records are usually audited).

Compute mean time between failures (MTBF) by dividing the number of failures into the

summation of exposure hours.  MTBF is a yardstick (not a micrometer) for reliability

performance.  For example, if operation plans for a 5 year turnaround and the MTBF is 10

years, seals are considered as highly reliable.  However, if MTBF is 1 year, seals are

considered highly unreliable.  Thus MTBF is a rank indicator of reliability using 5 year mission

time between turnarounds for Example 1.

MTBF is a simple reliability indicator.  It is descriptive for showing substantial differences in

MTBF for:

• good grade, good reliability, ANSI pumps,
• better grade, better reliability, ANSI-enhanced pumps, and
• best grade, best reliability API pumps.
Furthermore MBTF data often shows a severe decline in reliability with tight emission controls.

This occurs because failure definitions change to a more severe criteria resulting in more failures.
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Example 1:

Notice the rate of improvements (as shown by the slope of the trend lines) between the two companies in Example

1 plots.  These two companies not only have different grades of equipment but they have substantially different

operating philosophies.  The chemical company has the usual antagonism between operations and maintenance,

whereas the small refinery has embraced principles of TPM (Total Productive Maintenance) resulting in production

treating their equipment with tender loving care (i.e., reducing the human error failure rate and using human senses to

detect impending problems) thereby increasing component life and reducing costs.

Personal involvement in operation of equipment can substantially improve MTBF as 50% to

70% of failures are typically the result of human error in some industries. [3]  Note

improvements in Example 1 are underway even though the refinery does not have a detailed

reporting system.  Their improvements stem from working with operators to improve

performance, and this sets a sound datum for obtaining additional growth in MTBF through use

of modern data collection/analysis systems and the use of reliability engineering principles.

Chemical Plant ANSI Pump Life

Year

Number 
Of 

Unspared 
Pumps

Number 
Of 

Spared 
Pumps

Total Hours 
Of Pump 
Operation

Number 
Of Seal 
Failures

Seal 
MTBF 
(yrs)

Seal 
Failure 
Rate 

(fail/hr)

Conditions

1985 937 2996 21,330,000 1083 2.25 50.8E-6 No
1986 943 2996 21,380,000 937 2.60 43.8E-6 Emission
1987 950 2998 21,450,000 1156 2.12 53.9E-6 Monitoring
1988 950 3008 21,500,000 1127 2.18 52.4E-6
1989 953 3012 21,540,000 1003 2.45 46.6E-6
1990 955 3028 21,630,000 1689 1.46 78.1E-6
1991 957 3036 21,680,000 1628 1.52 75.1E-6
1992 963 3048 21,790,000 1581 1.57 72.6E-6
1993 955 3038 21,670,000 1517 1.63 70.0E-6 Emission
1994 951 3026 21,580,000 1487 1.66 68.9E-6 Monitoring

Refinery API Pump Life

Year

Number 
Of 

Unspared 
Pumps

Number Of 
Spared 
Pumps

Total Hours 
Of Pump 
Operation

Number 
Of Seal 
Failures

Seal 
MTBF 
(yrs)

Seal 
Failure 
Rate 

(fail/hr)

Conditions

1985 313 1542 9,500,000 415 2.61 43.7E-6 No
1986 313 1542 9,500,000 398 2.72 41.9E-6 Emission
1987 313 1548 9,520,000 380 2.86 39.9E-6 Monitoring
1988 310 1560 9,550,000 361 3.02 37.8E-6
1989 305 1580 9,590,000 343 3.19 35.8E-6
1990 295 1580 9,500,000 535 2.03 56.3E-6
1991 290 1590 9,500,000 481 2.25 50.6E-6
1992 280 1598 9,450,000 403 2.68 42.6E-6
1993 270 1602 9,380,000 354 3.02 37.7E-6 Emission
1994 265 1610 9,370,000 278 3.85 29.7E-6 Monitoring

Chemical Plant ANSI Pump Seal Life
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From failure data in Example 1, the cost of unreliability cannot be accurately calculated.

Unfortunately where the failures occurred is not known, and the cost of failures is not recorded.

Seldom does the failure of a spared pump shut down the production train, however, failure of an

unspared pump can have catastrophic effects on production which contributes major losses into

the pool of funds comprising the cost of unreliability.

The question can be answered about how good is the MTBF.  You don’t need the best MTBF

of all industries in the world.  However, you do need a competitive advantage (i.e., larger

MTBF) over your fiercest competitor—other cost being equal.

MTBF provides a clue about how well your facility is operating.  The real key about

performance lies in the cost of unreliability.  Cost of unreliability determines what must be spent

(either capital expenditures, upgrade costs, or ongoing costs) to reduce overall costs.

Typically, chemical plants have a cavalier attitude about how pumps operate as expressed by

“All pumps cavitate”.  Light weight ANSI pumps are not so tolerant of misoperation.  Thus

MTBF for ANSI pumps is often low (and maintenance replacement effort is high).  Often

chemical plant pumps have MTBF of 1 to 1.5 years.  If your plant shows a 3 to 4 year MTBF

you will often have a major competitive advantage.

Many refineries have a 2.5 to 3.5 year MTBF using higher grade, lower failure rate API pumps.

If your plant shows a 4 to 5 year MTBF you will often have a major competitive advantage.

Plant performance is not always influenced by average MTBF values as shown in Example 1.

These indices have the advantage of simplicity and account for all potential operating hours.

However, the disadvantage is these arithmetic calculations do not weight extreme values in data

which can overwhelm the calculation because of their specific arithmetic influence on results.
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Pareto distributions of failures usually show “bad actor” seal failures are concentrated in a

handful of troublesome pumps which generate most of the cost of unreliability.  Correcting the

behavior of these vital few pumps will have major influence over the performance metrics and

major influence over the cost of unreliability.  However, this requires specific data rather than

generalities available from the analysis of Example 1.

Example 2-Pooled Data

Often data is available for a single model of equipment with multiple pieces of equipment in

service at the same time under similar operating conditions.  The data often includes both

successes and failures which cause much confusion in analyzing the data.  Thus engineers often

conclude they have no useful data.  In fact, the sparse information of a few failures and many

successes contains a wealth of useful details.

Data shown in Example 2 has a few failures.  Most of the information resides in suspended data

representing successes.  Reliability engineering calculations must include successes in the

calculation of the MTBF to arrive at the correct index.  The calculated failure data can be

distorted by the method used to make the calculations.  This is illustrated with several methods

shown using techniques mentioned in Denson. [9]

Generally speaking the Weibull method of calculating the MTBF is a better method of obtaining

the central tendency of life.   In this case the Weibull MTBF is shown as 38,031 hours/failure

(round the data to show 38,000 hours/failure).  It is more accurately obtained than the

arithmetic calculation and properly reveals the aging relationship of the MTBF.
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Example 2:

Method #1 (Use RAC method #1, page 1-12,  Nonelectronic Parts Reliability Data -1995):

Failure rate = λ = 1/MTBF = (sum all failures)/(sum all exposure hours) =

2/(22+33+41+14+33+23+17)*1000 = 2/183,000 = 0.000,010,9 failures/hour,  or

MTBF = 1/0.0000109 = 91,500 hours/failure   (This simple method gives distorted values because

70+% of the data does not contain failures thus making it difficult to derive a failure rate.)

Method #2 (Use RAC method #5, page 1-13)

Failure rate = λ = 1/MTBF = (geometric mean of all failure rates associated with

failures)*(observed hours with failures)/(total observed hours)=

0.00003329636*((22,000+41,000)/183,000) = 0.000,011,4 failures/hour,  or

MTBF = 1/0.0000114= 87,719 hours/failure  (Note: Geometric mean was computed by EXCEL®

software using the failure rates of  1/22,000= 0.00004545455 and 1/41,000= 0.00002439024 failures/hour which

equals a geometric mean of 0.000,033,296,36.  This method has the same problems of method 1.)

Method #3 Find Weibull characteristics using

WeibullSMITH software:  The slope of the line,

β  = 2.859 indicates wear-out failure modes and

characteristic life, η = 42,675 hours.

The  MTBF = η∗Γ(1/β + 1) =

42,675*0.89117 = 38,031 hours/failure.

The Weibull method produces a more accurate value for MTBF considering the large number

of suspended values which are put into the failure distribution to produce a CDF that is correctly

calculated for the statistical parameters.  Note that Γ(1/β + 1) is the Gamma

Pump Seal Life (hours)
+ signifies seals are still running without failure

Pump #1 Pump #2 Pump #3 Pump #4 Pump #5
22,000 41,000 33,000+ 23,000+ 17,000+

  33,000+   14,000+
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function.  Since the slope of the Weibull line is greater than 1, failure rate increases with time

(and MTBF diminishes) so the values calculated in methods #1 and #2 are only early estimates

of a diminishing MTBF which is properly revealed by the Weibull analysis.

Weibull methods, using WeibullSMITH™ software [10] are better because a cumulative

distribution function is built including the suspended data at the correct portion of the cumulative

distribution function (CDF).  Then the data is fit to a flexible curve that more accurately shows

small amounts of data in rank regression considering both failures and successes.  The result is

none of the sparse data is wasted for reaching useful conclusions.

Example 3-Inspection Intervals

Interval inspection data is often confusing to casual observers as shown in Example 3.  The

actual age to failure is unknown as benign failures are reported in this case.  However, the

benign failure is known to have occurred prior to the inspection date.

Example 3:
Inspections Occur At The End Of Each Month For Stress Corrosion Cracks
No Catastrophic Failures Occurred.  Only Benign Cracks Were Discovered

Month 1 2 3 4 5 6 7 8 9
Number
Cracks
Found

0 3 4 5 1 4 1 3 2

Age to benign failure (months)=   

2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6,

7, 8, 8, 8, 9, and 9.

Each crack has its own age to failure.
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How many benign failures can occur? When will benign failures become catastrophic failures?

When will the benign failure cease?  These answers are unknown except during
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the 9 month inspection interval where no catastrophic failures were reported.  Each month,

more data is added to the accumulated pool of information; and the questions cannot be

answered accurately until a longer period of study has been completed.

One of the key points to make is that it is important to separate benign failures from catastrophic

failures.  Don’t treat all benign problems as catastrophic events—they may not grow into

catastrophic failures.  Don’t ignore benign failures—they may grow into critical events.  Thus

continue a prudent watch by means of periodic inspections which return stacks of data on the

Weibull chart at the periodic intervals.

Correct evaluation of inspection interval data shows this problem will continue longer than

would be predicted by traditional methods.  For this case, the age to 99% occurrence is

projected to be 11 months which is ~10% longer than if simple curve fits are used.

Does the  projection mean all data will be in-hand at the end of the 11 month interval?  Answers

for this question depend on the “physics of the failure” driven by the “load-strength

interference”--if the physics can’t answer the question, then continue the inspection watch to

determine if the cracks in Example 3 will grow to catastrophic proportions or if they remain as

non-relevant indications.

It is unwise to spend too much money chasing will-of-the-wisp problems.  It is clearly not

prudent to ignore potential problems that can grow to catastrophic proportions.  The key is to

keep benign issues in a business perspective and not waste money on non-relevant issues.

Example 4--Terse Vs Rich Data Descriptions

Maintenance problems are often reported by production in very terse statements.  These

statements, if taken literally, often result in non-sensible conclusions for Example 4 as shown by

the terse portion of the example.
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Example 4:

Terse statements of problems:
Failure Data With Terse (And Often Misleading) Descriptions Of Symptoms
   Note: s = Suspended data Age To Failure (days)

Action Date Seal
Commissioned 10/27/81
Seal Burned Up 4/13/85 1264
Seal Burned Up 12/12/88 1339
Seal Burned Up 1/6/89 25
Seal Burned Up 12/31/89 359
Seal Burned Up 6/21/91 537
Seal Burned Up 1/31/92 224
Seal Burned Up 7/12/92 163
Seal Burned Up 3/13/93 244

Data Analized On This Date--> 4/27/95 775s
System 

Interarrival

Arithmetic Analysis on 4/27/95 Time

Simplified MTBF Estimate= 616 616

Weibull Analysis on 4/27/95
β = — 0.871 <--Infant Mortality Suggested (β<1)
η = — 647.1

Mean = 693.59
Median = B50 = 424.92

All failures are
reported as
aging problems.

Rich statement of problems:
Failure Data With Rich (And Often Accurate) Descriptions Of Symptoms

   Note: s = Suspended data Age To Failure (days)
Action Date Seal Dry Seal LoFlo Seal

Commissioned 10/27/81 Age To Failure Data
Seal Burned Up-Heavy Wear Track 4/13/85 1264 Operator Event Data
Seal Burned Up-Heavy Wear Track 12/12/88 1339 (Not an aging process)
Seal Burned Up-No Fluid In System 1/6/89 25s 25
Seal Burned Up-Low System Flow 12/31/89 359s 359
Seal Burned Up-Heavy Wear Track 6/21/91 537
Seal Burned Up-Low System Flow 1/31/92 224s 224
Seal Burned Up-No Fluid In System 7/12/92 163s 163
Seal Burned Up-No Fluid In System 3/13/93 244s 244

Data Analized On This Date--> 4/27/95 775s
System 

Interarrival

Arithmetic Analysis on 4/27/95 Time

Simplified MTBF Estimate= 616
(Incorrect method)               MTBF = 1305 <--(1264+1339+537+775)/3 w/o suspensions

(Incorrect method)               MTBF = 1643 <--(Sum of all failure and suspended data)/3

(Correct method)                  MTBF = 1208 <--Fit curve to suspension adjusted median ranks

     and estimate life at the median (50%) position.

Weibull Analysis on 4/27/95
β = — 2.032 <--Wear-out Suggested (β > 1)
η = — 1293

Mean = 1145.64
Median = B50 = 1079.67

Note!!!:  5 of 8 failures
(or 62.5%  of the problem)
is caused by events and 
not by aging conditions!
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Example 4 continued-
Weibull plot of terse and rich information:

Routine data analysis would conclude that the seals have an infant mortality failure mode.  Infant

mortality is not the expected failure mode for a well designed, proven pump seal, which is

correctly installed and correctly operated. The Weibull results of Example 4 show substantial

differences in both slope and location.  Notice how the terse data (comprised of mixed failure

modes) produces a pessimistic appraisal of the mean life compared to the more accurate (and

longer) mean life from a single failure mode.  The mean life is reflected in the value of eta for the

Weibull characteristic life.

If descriptions in the maintenance/repair records are enriched to include only a few more words,

the results of the terse data are very enlightening as shown in Example 4.  Only a few more

words show the problem cannot likely be solved by hardware.  The root cause of the problem

is most likely corrected through people/procedure solutions.
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Problems of poor reporting of vague symptoms are wide spread in many industries. History

records must be updated and corrected with proper information for solving the correct problem.

If the root problem is not solved, then efforts are not cost effective and money is thrown at

wrong problems!

Substantial progress is underway in developing and adding cutting-edge technology for data

extraction from field maintenance report data analysis efforts. [11]  This new effort can enrich

data for analysis.

New systems can “read” field maintenance reports using special dictionaries, grammar, and

syntax data bases to “understand” the context of reported problems and solutions.  The expert

systems perform both a top-down and bottom-up language analysis.  Then the computer

systems use a built-in linguistic knowledge base and a conceptual knowledge base which

interact with each other and with a conceptual data base derived from expert systems.  Benefits

from this high technology computer analysis of problem and solutions are productivity

improvement, error reduction, and early detection of failure patterns.

The new technology uses service reports based on fixed-field failure reporting methods

supplemented with narrative fields of information.  The fixed-fields contain the statistics, failure

symptoms, failure modes, failure descriptions, failure times, etc.  Fixed-fields are completed by

executing preconceived codes.  Often fixed-fields are left incomplete in favor of descriptions in

the narrative fields.  Automatic processing of on-line text reporting can quickly build statistical

data based of the fixed-field data, but human analysts are required (at great cost and time delay)

to abstract missing data from the narrative fields into the fixed-fields.

Human analysis effort is now being automated by extensive use of computers.  These leading

edge computer systems can identify errors in fixed field information, merge free-form and fixed-

field information, create new fixed-fields, and support expanded queries.  Interfaces to the

systems use English to communicate with the computer, and the system can understand and
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process language.
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This emerging technology is very computer intensive and requires reliability experts and

computer experts to build the analysis systems so that “thinking” occurs during processing of the

reports.  Of course these new systems require human input of facts to get the analysis moving in

the right direction.

Another cutting edge technology for enriching data descriptions is statistical-pattern recognition.

[12]  Statistical pattern recognition development is active today in academic and industrial

worlds.  Document processing, engineering, and medical fields are creating and applying new,

more powerful techniques.  Solutions to the recognition problems in these areas rest with the

accurate classification of data.  Statistic-pattern recognition is based on Bayesian statistics for

data mining and this has also been applied to design review decision making.  [13]

For years, most data put into existing maintenance systems has not been used for solving

problems.  Thus no one has worked to improve the data—it is the age old chicken or egg

problem. Once you understand how failure data is used and nagging problems are solved, the

data records get improved.

Example 5--Cost Of Unreliability

Previous history of failures helps predict the cost of unreliability.  Assuming no significant

improvements have corrected the basic problems with the process or equipment.

A one page spreadsheet often shows the cost of unreliability. A spreadsheet is helpful for

understanding and communicating budgets for correcting problems.  Of course, if costs for

correcting problems exceeds outage costs, then it is unwise to spend correction money.  In

short, the process may have a built-in unreliability burden not shared by competitors.
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Example 5:

Annual Cost Of Unreliability For One Continuous Process

Given: When running, the process produces $10,000/hr of gross margin profit.

When outages occur, scrap is produced at a cost of $15,000 per incident.

Breakdown maintenance costs are $25,000 per incident and 12 hours are lost.

Past failure records will prevail until major changes are made to correct problems.

Find: What is the annual cost of unreliability?

How many failures can we expect during a one year production run?

How much can we afford to spend for corrections (using simple one year payback)?

Management’s argument for correcting the cost of unreliability?

Cell A Cell B Cell C Plant A
Study period (hrs) 52560 60000 16000
Number of failures 5 7 1

MTBF (hrs/failure) 10512 8571.429 16000
Expected failures/yr. 0.833333 1.022 0.5475 1.855333 Management Priority
Lost gross margin/yr $100,000 $122,640 $65,700 $288,340 1

Scrap Cost/yr $12,500 $15,330 $8,213 $27,830 3
Breakdown Cost/yr $20,833 $25,550 $13,688 $46,383 2

Total Loss/yr $133,333 $163,520 $87,600 $362,553 <--Cost  of
unreliability

Engineering Priority--> 2 1 3
Cost of unavailability ($/hr)= $16,284 Availability = 99.7458%

Answers:
The annual cost of unreliability is $362,553 for this process.

Expect ~2 failures per year (1.8553 failures/year).

Engineering should fix problems in Cell B.  They can spend up to $163,520.

Management should argue for correcting problems to increase gross margin $’s 

(not arguing against the maintenance cost of breakdown repairs).
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Note this example shows both management and engineering priorities for fixing problems.  Of

course this plant generates high gross margin from operations, but unreliability money is being

wasted.

The operation in Example 5 looses $362,500 per year from the cost of unreliability.  Correcting

this loss requires good, economical ideas which often do not require large expenditures when

the true root causes of failures are known, understood, and corrected.

Management’s priority is clearly to keep the plant running to generate gross margin.

Engineering, Maintenance, and Production priority is to fix Cell B for less than $163,500

and thus reduce the cost of unreliability by 45%!  Reducing the cost of unreliability requires

teamwork.

Summary-

Where’s your reliability data?  It’s all around your plants in various forms.  You must extract the

important details.  Understanding failures and failure data increases the probability for making

successful improvements.

Several examples show how to quantify reliability indicators which describe plant problems.

Some examples use general failure data, and other cases need specific failure data.  All cases

should use both failures and costs to describe business problems.  Use your data to solve

problems, and prevent future costly problems (even though it means you lose the adrenaline

flow from chasing the ambulance to the scene of the wreck).

When you understand how to handle reliability data you are on the road to correcting problems.

Make the data talk in terms you can understand.  Understanding the data is helpful but the real

payoff comes from solving problems that reduce the cost of unreliability—this requires a mutual

bias for action by Production, Maintenance, Engineering, and Reliability departments to solve

problems rather than talking about solving problems.
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Don’t wait for magic solutions and tomorrow’s computer systems.  Put your data to work for

business solutions.  You’ll never have a perfect reporting system for your failure data.  You’ll

never have a perfect analysis system.

Some facts are better than no facts.  As you gain experience in extracting reliability data from

your system, better data will also direct better improvements.
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