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All failure data for plant equipment and processes contains problems with definition of failure, data
accuracy, data recording ambiguities, data accessibility, and lack of currency values. These are not
reasons for ignoring data. Data banks of plant maintenance and cost records are a gold mine for
starting a chain reaction of improvements. Data analysis puts facts into an action oriented format
involving age-to-failures, along with suspended data from successes, to focus on making
improvements to reduce the cost of unreliability. Five data sets are analyzed to show how data is
used. Understanding data is helpful, but making cost effective improvements by use of the datais the

business objective!

Condder these recent quotations about data for making reliability improvements:.

“ A persistent theme is the lack of data bases for reliability engineering. Continual
criesfor general and specific reliability data fill the literature.” [1]

" ..thefirst step istry to get good data. This step isthe most difficult....” [2]

“The major need in HRA [Human Rdiability Andlysq is for quality data.” [3]

“ ...successful application of RCM [Reliability-Centered Maintenance] needs a great
deal of information.” [4]

Data appetites for making rdiability improvements are high and many engineers do not know
what data to acquire or how to analyze the facts. Jones [5] says“ ...we're often left with a
glut of unused data. Our challenge is to closely examine our systems, and our needs,
measure only the essential data, and then put our measurements to productive and

profitable use.”
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An extenson of afamiliar adage may be: Y ou can never be too rich, too thin, or have too much

useful riability data

Definitions-
It'simportant to have the same definitions for reaching the same conclusions about reliability:

Failure-“ Loss of function when we want the function.” [6] “ The event, or inoperable
state, in which any item or part of an item does not, or would not, perform as
previoudy specified.” [7]

Failure Rate- “The total number of failures within an item population, divided by the
total number of life units expended by that population, during a particular
measurement interval under stated conditions.” [7] (Failure rate is the reciproca of
MTBF or MTTF for exponentid distributions but this is not grictly correct for Welbull
digributionswhen b* 1.)

MTBF (Mean Time Bewemn Failure- “ A basic measure of reliability for repairable
items. The mean number of life units during which all parts of the time perform
within their specified limits, during a particular measurement interval under stated
conditions.” [7] (Often refersto the mean life for a population.)

MTTF (Mean Time To Failure)- “ A basic measure of reliability for non-repairable
items: The total number of life units of an item divided by the total number of failures
within that population, during a particular measurement interval under stated
conditions.” [7] (Often refersto the mean lifefor asingle piece of equipment.)
Réliability-“ The probability that an item can perform its intended function for a
specified interval under stated conditions.” [7]

Réliability Data-A collection of numerical facts based on measuring the motivation
of failure by cumulative insults to the component or system where three requirements
are precisely defined:

— an unambiguous measurement time origin must be defined,

— ascale for measuring passage of “ time” must be set: and

— the meaning of failure must be entirely clear. [2] [8]
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Reliability Engineering-“Appropriate  application of: engineering disciplines,
techniques, skills and data to assess problems or improvements, achieve the required
reliability, maintainability, serviceability, exchangeability, availability, and yield of
products and processes at a cost that satisfies business needs.” [8]

When catastrophic fallure occurs, the time of falure is clear. However, when falure is dow

deterioration of a component or system to meet a desired standard of performance, then you

must define and quantify failure clearly to avoid confuson such as:

¥, What we want to achieve versus what we can do. (Arguments over failures occur because
usudly the “want” is a production viewpoint whereas “can do” is usudly a maintenance or
engineering viewpoint of equipment capability. When “can do” exceeds “want”, few
arguments occur.)

¥, What we are capable of achieving versus the inherent performance capability. (When
“inherent” performance exceeds required capability few arguments exist, but problems
occur when requirements exceed built-in “ capability”.)

Two common threads frequently occur concerning rdliability detar

% How am | doing compared to others?

% How do | make improvements?

Answersto these questions involve:

1. What are the specific numericsfor existing age to failure or falure rates?
2. What isthe cogt of unrdiahility for funding rdiability improvements?

3. How good is good enough?

4. Dol have asystem for reporting the datain a useful format?

5. Whereismy data?

Some data dways exis within any company even when the data are less than perfect for
religbility purposes. Rdiability Engineering efforts must use data effectively.
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Example 1-Pump Seal Life

Two companies lack detalled failure reporting sysems—one is a chemica company and the
other arefinery. Their raw data comes from two sources.

1. A nose count of pumps from asset records, and

2. A nose count of sedlsreplaced from purchasing/inventory records.

The count of pumps is used for determining the number of operating hours to which seds are
exposed. Pumps running full-time are exposed at 8760 hours per year. Spared pumps are
exposed 8760 hours per year for the set assuming each pump runs one-haf time.

Purchasing/inventory vaues of seds consumed help find the number of fallures experienced
during the year. (The number of failures recorded are assumed as correct values since both

purchasing and inventory records are usually audited).

Compute mean time between falures (MTBF) by dividing the number of falures into the
summation of exposure hours. MTBF is a yardstick (not a micrometer) for reliability
performance. For example, if operation plansfor a 5 year turnaround and the MTBF is 10
years, seds are conddered as highly reliadble.  However, if MTBF is 1 year, seds ae
conddered highly unrdigble. Thus MTBF is arank indicator of rdiability usng 5 year misson

time between turnarounds for Example 1.

MTBF is a ample rdiability indicator. It is decriptive for showing subgtantid differences in
MTBF for:

good grade, good rdiability, ANSI pumps,

better grade, better rdiability, ANSI-enhanced pumps, and

best grade, best rdiability APl pumps.
Furthermore MBTF data often shows a severe decline in rdiability with tight emisson controls.

This occurs because fallure definitions change to a more severe criteria resulting in more falures.
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Example 1:
Chemical Plant ANS| Pump Life Refinery APl Pump Life
Nugfber Nugfber Total Hours| Number | Seal FiieIL?:e Nurgfber Number Off Total Hours | Number | Seal Fji?::e
Year Of Pump | Of Seal | MTBF| Conditions |l Year Spared Of Pump | Of Seal [MTBF| Conditions
URETEres) | Seted Operation | Failures| (yrs) Rate U] Pumps | Operation |Failures| (yrs) Rate
Pumps | Pumps | P ') (taitshr) Pumps P P ') (tailshr)
1985 937 2996 21,330,000 1083 225 50.8E-6 No 1985 313 1542 9,500,000 415 261 43.7E-6 No
1986 943 2996 21,380,000 937 260 43.8E-6 Emission J 1986 313 1542 9,500,000 398 272 41.9E-6 Emission
1987 950 2998 21,450,000 1156 2.12 53.9E-6 Monitoring § 1987 313 1548 9,520,000 380 286 39.9E-6 Monitoring
1988 950 3008 21,500,000 1127 218 52.4E-6 1988 310 1560 9,550,000 361 302 37.8E-6
1989 953 3012 21,540,000 1003 245 46.6E-6 1989 305 1580 9.590.000 343 319 35.8E-6
1990 955 3028 21,630,000 1689 146 78.1E-6 1990 295 1580 9,500,000 535 203 56.3E-6
1991 957 3036 21,680,000 1628 152 75.1E-6 1991 290 1590 9,500,000 481 225 50.6E-6
1992 963 3048 21,790,000 1581 157 72.6E-6 1992 280 1598 9,450,000 403 268 42.6E-6
1993 955 3038 21,670,000 1517 1.63 70.0E-6 Emission § 1993 270 1602 9,380,000 354 302 37.7E-6 Emission
1004 o951 3026 21,580,000 1487 1.66 68.9E-6 Monitoring§ 1994 __ 26% 1610 9,370,00C__278 385 29.7E-6 Monitoring
Chemical Plant ANSI Pump Seal Life Refinery APl Pump Seal Life
4.00 4.00
3.50 350 ,‘
3.00 L e ~
_ )i 3.00 —— +
© 250 4 ® 25 hd
2 M . 2 Before Emissi .
L 2.00 > 200 efore Emission
o P o
£ 1501 Before Em!55|on < E 1.50 Monitoring After Emission
Monitoring After Emission Monitoring
1.00 L ] 1.00
Monitoring
0.50 0.50
0.00 T 0.00
1984 1986 1988 1990 1992 1994 1984 1986 1988 1990 1992 1994
Year Year

Naticetheratedf improvemants (esshoan by thedoped thetrend lines) betwean thetwo compeniesin Exanmple
1pas Theetwo companies nat anly have differat grades of epuipmat but they have sbdantidly differat
gparating philosophies The dhamicd compeny hes the usLd antagoniam betwean gparaions and maintenance,
wharessthe sl refinay hesembreoed prindplesdf TPM (Tatel Produdive Mantenence) reauiting in procudtion
treding therr equipmant with tender loving care (1., reduaing the humen erar falurerae and usng humen sansesstto
Odtect impending pradles) thareby inoressing componant lifeand reduding aosts

Persond involvement in operation of equipment can subgantialy improve MTBF as 50% to
70% of falures are typicdly the result of human eror in some indudries. [3] Note
improvements in Example 1 are underway even though the refinery does not have a detailed
reporting sysem. Ther improvements sem from working with operators to improve
performance, and this sets a sound datum for obtaining additional growth in MTBF through use
of modern data collection/andyss systems and the use of rdiability engineering principles.
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From failure data in Example 1, the cost of unreliability cannot be accurately calculated.
Unfortunately where the failures occurred is not known, and the cost of fallures is not recorded.
Seldom does the failure of a spared pump shut down the production train, however, failure of an
ungpared pump can have catastrophic effects on production which contributes mgor losses into
the pool of funds comprising the cost of unrdiability.

The question can be answered about how good isthe MTBF. You don’t need the best MTBF
of al indudtries in the world. However, you do need a competitive advantage (i.e, larger
MTBF) over your fiercest competitor—other cost being equdl.

MTBF provides a clue about how well your facility is operating. The red key about
performance liesin the cost of unreliability. Cost of unreigbility determines what must be spent
(either capital expenditures, upgrade costs, or ongoing costs) to reduce overall costs.

Typicaly, chemica plants have a cavaier attitude about how pumps operate as expressed by
“All pumps cavitate’. Light weight ANS pumps are not so tolerant of misoperation. Thus
MTBF for ANSl pumps is often low (and maintenance replacement effort is high). Often
chemica plant pumps have MTBF of 1 to 1.5 years. If your plant shows a 3 to 4 year MTBF
you will often have amgor competitive advantage.

Many refineries have a 2.5 to 3.5 year MTBF using higher grade, lower failure rate APl pumps.
If your plant shows a4 to 5 year MTBF you will often have amgor competitive advantage.

Plant performance is not dways influenced by average MTBF vaues as shown in Example 1.
These indices have the advantage of smplicity and account for al potentid operating hours.
However, the disadvantage is these arithmetic calculations do not weight extreme vaues in data

which can overwhelm the caculation because of their specific arithmetic influence on results.
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Pareto digributions of falures usudly show “bad actor” sed fallures are concentrated in a
handful of troublesome pumps which generate most of the cost of unrdiability. Correcting the
behavior of these vitd few pumps will have mgor influence over the performance metrics and
magor influence over the cost of unrdiability. However, this requires specific data rather than
generdities available from the andyss of Example 1.

Example 2-Pooled Data

Often deta is avalable for a sngle modd of equipment with multiple pieces of eguipment in
sarvice @ the same time under Smilar operating conditions. The data often includes both
successes and fallures which cause much confusion in andyzing the data Thus engineers often
conclude they have no useful data. In fact, the sparse information of a few failures and many

successes contains awedth of ussful detalls.

Data shown in Example 2 has afew fallures. Mogt of the information resdes in suspended data
representing successes.  Rdiability engineering caculaions must include successes in the
caculation of the MTBF to arive at the correct index. The calculated falure data can be
distorted by the method used to make the calculations. Thisis illustrated with severa methods
shown usng techniques mentioned in Denson. [9]

Generdly spesking the Weibull method of caculating the MTBF is a better method of obtaining
the central tendency of life. In this case the Weibull MTBF is shown as 38,031 hours/failure
(round the data to show 38,000 hourgffailure). It is more accurately obtained than the
arithmetic cadculation and properly reveds the aging relaionship of the MTBF-.
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Example 2:
Pump Seal Life (hours)
" dgnifies seds are il running without failure
Pump #1 Pump #2 Pump #3 Pump #4 Pump #5
22,000 41,000 33,000 23,000" 17,000
33,000 14,000

Method #1 (Use RAC method #1, page 1-12, Nondectronic PartsRdiability Data-1995):
Falurerae=1 = 1/MTBF = (sum dl falures)/(sum al exposure hours) =
2/(22+33+41+14+33+23+17)* 1000 = 2/183,000 = 0.000,010,9 failures/hour, or

MTBF = 1/0.0000109 = 91,500 hourd/failure (This simple method gives distorted values because

70+% of the data does not contain failures thus making it difficult to derive afailurerate.)

Method #2 (Use RAC method #5, page 1-13)

Falure rae = | = 1/MTBF = (geometric mean of dl falure rates associated with
fallures)* (observed hours with falures)/(total observed hours)=

0.00008329636* ((22,000+41,000)/183,000) = 0.000,011 4 falureshour, or

MTBF = 1/0.0000114= 87,719 hours/failure (Note: Geometric mean was computed by EXCEL®

software using the failure ratesof 1/22,000= 0.00004545455 and 1/41,000= 0.00002439024 failures’hour which
equals ageometric mean of 0.000,033,296,36. This method has the same problems of method 1.)

Pump Seals

Method #3 Find Weibull characterigtics usng

EL

Worr
20

WebullSMITH software: The dope of the line,

“ b = 2.859 indicates wear-out failure modes and

i=1)

41

characteridtic life, h = 42,675 hours.

=)

20

N HPO HOZEEECSOO0O

eta beta r"Z ws
42675.16 2.859 1 75

The MTBF =h*G(1/b + 1) =
42,675*0.89117 = 38,031 hours/failure.

1@
il 1 QA

Seal Age (hours)

The Weibull method produces a more accurate vaue for MTBF considering the large number
of suspended vaues which are put into the failure digtribution to produce a CDF that is correctly
caculated for the satistica parameters. Note that G(1/b + 1) isthe Gamma
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function. Since the dope of the Weibull line is greater than 1, failure rate increases with time
(and MTBF diminishes) so the vaues cdculated in methods #1 and #2 are only early estimates
of adiminishing MTBF which is properly reveded by the Weibull anayss.

Weibull methods, usng WelbullSMITH™ software [10] are better because a cumulative
digribution function is built including the suspended data at the correct portion of the cumulative
digribution function (CDF). Then the data is fit to a flexible curve that more accurately shows
amal amounts of datain rank regresson considering both failures and successes. The result is

none of the sparse data is wasted for reaching useful conclusions.

Example 3-Ingpection Intervals
Interva ingpection data is often confusing to casua observers as shown in Example 3 The
actud age to falure is unknown as benign falures are reported in this case. However, the

benign failure is known to have occurred prior to the ingpection date.

Example 3:

Inspections Occur At The End Of Each Month For Stress Corrosion Cracks
No Catastrophic Failures Occurred. Only Benign Cracks Were Discovered

Month 1 2 3 4 5 6 7 8 9

Number

Cracks | 3 4 5 1 4 1 3 2
Found

RESULTS OF MONTHLY INSPECTIONS . .
Age to benign failure (months)=

2, 2’ 2’ 37 3’ 31 3! 4’ 4, 4’ 4’ 47 5’ 61 6! 6’ 6,
7,8,8,89ad9.

== W rrsinsp

N =HEO
Ty
w

5 | Inspection Interval Data |

Each aack hesitsonn agetofalure

N MO0 HOZEEECOO0O0

eta beta r”2 nes
5.32458 Z2.086 0.979 23-0

-1 1 a@ 12

Age To Benign Failure (months)
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How many benign failures can occur? When will benign failures become catastrophic failures?

When will the benign falure cease? These answers are unknown except during
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the 9 month ingpection interva where no catastrophic failures were reported. Each month,
more data is added to the accumulated pool of information; and the questions cannot be
answered accurately until alonger period of study has been completed.

One of the key pointsto make isthat it isimportant to separate benign failures from catastrophic
falures. Don't treat al benign problems as catastrophic events—they may not grow into
catagtrophic fallures. Don't ignore benign fallures—they may grow into critica events. Thus
continue a prudent watch by means of periodic inspections which return stacks of deta on the
Waeibull chart at the periodic intervals.

Correct evduation of ingpection interva data shows this problem will continue longer than
would be predicted by traditional methods. For this case, the age to 99% occurrence is
projected to be 11 months which is ~10% longer than if Smple curve fits are used.

Doesthe projection mean al datawill be in-hand a the end of the 11 month interva? Answers
for this question depend on the “physcs of the falure® driven by the “load-grength
interference’--if the physics can't answer the question, then continue the inspection watch to
determine if the cracks in Example 3 will grow to catastrophic proportions or if they remain as
non-relevant indications.

It is unwise to spend too much money chasing will-of-the-wisp problems. It is clearly not
prudent to ignore potentia problems that can grow to catastrophic proportions. The key isto

keep benign issues in a business perspective and not waste money on non-relevant issues.

Example4-TersVsRich Data Dexriptions
Maintenance problems are often reported by production in very terse statements. These
datements, if taken literaly, often result in non-sensible conclusions for Example 4 as shown by

the terse portion of the example.
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Example 4:

Terse statements of problems:

Failure Data With Terse (And Often Misleading) Descriptions Of Symptoms

Note: s = Suspended data Age To Failure (days)
Action Date Seal
Commissioned 10/27/81
Seal Burned Up 4/13/85 1264
Seal Burned Up 12/12/88 1339
Seal Burned Up 1/6/89 25 Al failures are
Seal Burned Up 12/31/89 359 reported as
Seal Burned Up 6/21/91 537 aging problems.
Seal Burned Up 1/31/92 224
Seal Burned Up 7112/92 163
Seal Burned Up 3/13/93 244
Data Analized On This Date--> 4/27/95 775s
System
Interarrival
Arithmetic Analysis on 4/27/95 Time
Simplified MTBF Estimate= 616 616
Weibull Analysis on 4/27/95
b= — 0.871 <--Infant Mortality Suggested (b<1)
h= — 647.1
Mean = 693.59
Median = Bgqg = 424.92

Rich statement of problems:

Failure Data With Rich (And Off

en Accurate) Descriptions Of Symptoms

Note: s = Suspended data

Age To Faijlure (days)

Action Date Seal Dry Seal LoFlo Seal
Commissioned 10/27/81 v Age To Failure Data
Seal Burned Up-Heavy Wear Track  4/13/85 1264 Operator Event Data
Seal Burned Up-Heavy Wear Track 12/12/88 1339 + ¢ (Not an aging process)
Seal Burned Up-No Fluid In System  1/6/89 25s 25
Seal Burned Up-Low System Flow  12/31/89 359s 359 |Notelll: 5of 8 failures
Seal Burned Up-Heavy Wear Track  6/21/91 537 (or 62.5% of the problem)
Seal Burned Up-Low System Flow 1/31/92 224s 224 fnfif: :i: 3’ xﬁiﬁ
Seal Burned Up-No Fluid In System  7/12/92 163s 163
Seal Burned Up-No Fluid In System  3/13/93 244s 244
Data Analized On This Date--> 4/27/95 175s
System
Interarrival
Arithmetic Analysis on 4/27/95 Time
Simplified MTBF Estimate= 616
(Incorrect method) MTBF = 1305  <--(1264+1339+537+775)/3 w/o suspensions
(Incorrect method) MTBF = 1643  <--(Sum of all failure and suspended data)/3
(Correct method) MTBF = 1208  <--Fit curve to suspension adjusted median ranks
and estimate life at the median (50%) position.
Weibull Analysis on 4/27/95
b= — 2.032 <--Wear-out Suggested (b > 1)
h= = 1293
Mean = 1145.64
Median = B5q = 1079.67
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Example 4 continued-
Weibull plot of terse and rich informetion:
Seal Failure Data
=10
=1 Worr
T
0 c@ [ Terse (fAnd Often Misleading) |
C
&
C
u i
R =i
R
E ZiA
N
C
E 1@
c
D =
F [Rich (And Often Accurate) |
“ beta r"Z s
= 647.1447 0.871 0.951 9-1
1293.044 2.032 0.873 9.6
1
1 1A 1A DA 1 EAED
Age To Failure (days)
FF

Routine data analyss would conclude that the sedls have an infant mortdity fallure mode. Infant
mortdity is not the expected falure mode for a well designed, proven pump sed, which is
correctly indalled and correctly operated. The Weibull results of Example 4 show subgtantia
differences in both dope and location. Notice how the terse data (comprised of mixed failure
modes) produces a pessmigtic gppraisa of the mean life compared to the more accurate (and
longer) mean life from a single fallure mode. The mean lifeisreflected in the vaue of eta for the
Weibull characteritic life.

If descriptions in the maintenance/repair records are enriched to include only afew more words,
the results of the terse data are very enlightening as shown in Example 4. Only a few more
words show the problem cannot likely be solved by hardware. The root cause of the problem

ismogt likely corrected through people/procedure solutions.
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Problems of poor reporting of vague symptoms are wide spread in many industries. History
records must be updated and corrected with proper information for solving the correct problem.
If the root problem is not solved, then efforts are not cost effective and money is thrown at

wrong problems!

Subgtantiad progress is underway in developing and adding cutting-edge technology for data
extraction from field maintenance report data andlyss efforts. [11] This new effort can enrich
datafor andyss.

New sysems can “read” field maintenance reports usng specid dictionaries, grammar, and
gyntax data bases to “understand” the context of reported problems and solutions. The expert
systems perform both a top-down and bottom-up language andyss. Then the computer
systems use a built-in linguistic knowledge base and a conceptua knowledge base which
interact with each other and with a conceptua data base derived from expert systems. Benefits
from this high technology computer andyss of problem and solutions are productivity

improvement, error reduction, and early detection of failure patterns.

The new technology uses service reports based on fixed-fidd falure reporting methods
supplemented with narrative fidds of information. The fixed-fidds contain the gatidtics, falure
symptoms, failure modes, falure descriptions, falure times, etc. Fixed-fields are completed by
executing preconcelved codes.  Often fixed-fields are left incomplete in favor of descriptionsin
the narrative fidlds. Automatic processing of on-line text reporting can quickly build gatigtica
data based of the fixed-field data, but human anaysts are required (at greet cost and time delay)
to abstract missng data from the narrative fieds into the fixed-fields.

Human andysis effort is now being automated by extensve use of computers. These leading
edge computer systems can identify errors in fixed fidd information, merge free-form and fixed-
fied information, create new fixed-fidds, and support expanded queries. Interfaces to the

systems use English to communicate with the computer, and the system can understand and



Page 16

process language.
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This emerging technology is very computer intensve and requires reigbility experts and
computer expertsto build the andys's systems o that “thinking” occurs during processing of the
reports. Of course these new systems require human input of facts to get the andyss moving in

the right direction.

Another cutting edge technology for enriching data descriptions is Statistical-pattern recognition.
[12] Satidtical pettern recognition development is active today in academic and indudtria
worlds. Document processing, engineering, and medicd fields are creating and gpplying new,
more powerful techniques. Solutions to the recognition problems in these areas rest with the
accurate classfication of data. Statistic-pattern recognition is based on Bayesan daidtics for
data mining and this has aso been applied to design review decison making. [13]

For years, mogt data put into existing maintenance systems has not been used for solving
problems. Thus no one has worked to improve the data—it is the age old chicken or egg
problem. Once you understand how failure data is used and nagging problems are solved, the
data records get improved.

Example 5--Cost Of Unrdiability
Previous higory of falures hdps predict the cogt of unrdiability. Assuming no sgnificant

improvements have corrected the basic problems with the process or equipment.

A one page spreadsheet often shows the cost of unreliability. A Spreadsheet is helpful for
understanding and communicating budgets for correcting problems. Of course, if costs for
correcting problems exceeds outage codsts, then it is unwise to spend correction money. In
short, the process may have a built-in unrdiability burden not shared by competitors.
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Example 5:

Annual Cost Of Unrdliability For One Continuous Process

Given: When running, the process produces $10,000/hr of gross margin profit.
When outages occur, scrap is produced at acost of $15,000 per incident.

Breakdown maintenance costs are $25,000 per incident and 12 hours are lost.

Pest failure records will prevail until mgor changes are made to correct problems.

Find: What istheannud cogt of unreligbility?
How many failures can we expect during a one year production run?
How much can we afford to spend for corrections (using Smple one year payback)?
Management’s argument for correcting the cost of unrdiability?
Cdl A Cdl B Cdl C Plant A
Study period (hrs) 52560 60000 16000
Number of failures 5 7 1
MTBF (hrsffallure) 10512 8571.429 16000
Expected failuresyr.  0.833333 1.022 0.5475 1.855333 Management Priority
Lost grossmargin/yr| $100,000  $122,640 $65,700 | $288,340 1
Scrap Cost/yr| $12,500 $15,330 $8,213 $27,830 3
Breakdown Cost/yr| $20,833 $25,550 $13,688 $46,383 2
Total Losslyr $133,333 $163,520 $87,600 | $362,553 <--Cost of
unrdiability
Engineering Priority--> 2 1 3

Cost of unavailability (¥/hn)=$16,284  Availability = 99.7458%

Answers:
The annua cost of unrdiability is $362,553 for this process.
Expect ~2 fallures per year (1.8553 failures/year).
Engineering should fix problemsin Cell B. They can spend up to $163,520.
Management should argue for correcting problemsto increase gross margin $'s

(not arguing againgt the maintenance cost of breakdown repairs).
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Note this example shows both management and engineering priorities for fixing problems.  Of
course this plant generates high gross margin from operations, but unriability money is being
wasted.

The operation in Example 5 looses $362,500 per year from the cogt of unreiability. Correcting
this loss requires good, economica ideas which often do not require large expenditures when

the true root causes of failures are known, understood, and corrected.

Management’s priority is clearly to keep the plant running to generate gross margin.
Engineering, Maintenance, and Production priority is to fix Cdl B for less than $163,500
and thus reduce the cogt of unrdiability by 45%! Reducing the cost of unrdiability requires

teamwork.

Summary-

Where s your riability data? It'sal around your plantsin various forms. Y ou must extract the
important details. Understanding failures and failure data increases the probability for making
successful improvements.

Severd examples show how to quantify rdiability indicators which describe plant problems.
Some examples use generd failure data, and other cases need specific falure data. All cases
should use both failures and costs to describe business problems. Use your data to solve
problems, and prevent future costly problems (even though it means you lose the adrendine

flow from chasing the ambulance to the scene of the wreck).

When you understand how to handle reliability data you are on the road to correcting problems.
Make the data tak in terms you can understand. Understanding the data is helpful but the red
payoff comes from solving problems that reduce the cost of unreiability—this requires a mutud
bias for action by Production, Maintenance, Engineering, and Reliability departments to solve
problems rather than talking about solving problems.
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Don't wait for magic solutions and tomorrow’ s computer systems.  Put your data to work for
business solutions. You'll never have a perfect reporting system for your falure data. You'll
never have a perfect analyss system.

Some facts are better than no facts. As you gain experience in extracting reliability data from
your system, better datawill also direct better improvements.
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